
pulse;  ATcool  pe r ,  the p e r m i s s i b l e  res idua l  overheat ing  of the t h e r m i s t o r  at the end of the in te rva l  between 
pulses ;  77, t h e r m i s t o r  coeff icient  of t he rm a l  loading; re ,  e l ec t r i ca l  t ime  constant  of  t h e r m i s t o r ;  ART, i n c r e -  
ment  of t h e r m i s t o r  r e s i s t a n c e  due to action of vol tage pulse.  
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D E T E R M I N A T I O N  O F  T H E  M E A N  E N E R G Y  D E N S I T Y  

O F  A L I G H T  B E A M  IN AN I R R E G U L A R  T H E R M O D Y N A M I C  

L I G H T  G U I D E  

A.  F .  Y a k u b o v ,  ]~. T .  B r u k - L e v i n s o n ,  UDC 654.91:621.372.81.09:535.811 
A .  G.  M u r a d y a n ,  a n d  O.  G.  M a r t y n e n k o  

The mean  ene rgy  densi ty  of a beam of light in an i r r e g u l a r  t he rmodynamic  light guide with r an -  
dom lens shif ts  is ca lcula ted  using the approach  desc r ibed  in [3]. 

w 1. The ene rgy  s t ruc tu re  of a beam of light propagat ing  in an optical  communica t ion  line consis t ing of 
a s e r i e s  of d i s c r e t e  phase  e o r r e e t o r s  is usual ly studied by quasiopt ieaI  methods [1]. F o r  r e g u l a r  l ines this 
approach  enables  one to obtain fa i r ly  comple te  informat ion  on the mode s t ruc tu re ,  the l o s se s  in the line, etc. ,  
but se r ious  diff icul t ies  a r e  encountered  when one a t t empts  to apply a s i m i l a r  ana lys i s  to l ines which have a 
di f ferent  kind of s ta t i s t i ca l  i r r e g u l a r i t y  (d i sp lacement  of c o r r e c t o r s ,  rotat ion of the beam,  d i f fe rences  between 
the c o r r e e t o r  p a r a m e t e r s ,  etc.) .  

G e o m e t r i c a l  optics ,  which is s i m p l e r  than other approaches ,  enables  one to obtain reasonab le  informat ion 
on the ene rgy 'd i s t r ibu t ion  in the beam of light. One of the v e r s i o n s  of this approach  is the r ay  method (see [2] 
and the r e f e r e n c e s  given there) .  Another  approach  by which the ene rgy  dis t r ibut ion can be analyzed using 
geome t r i ca l  opt ics  has been deser.ibed in [3]. A different ia l  equation for  the light ene rgy  densi ty  was obtained 
the re  which enables  one to find the ene rgy  densi ty  a t  any point in the region for  an ass igned  initial distr ibution.  
The evolution of the energy  dis t r ibut ion of the beam in this approach  is  t r a ced  in phase  space  of the beam,  and 
the ene rgy  densi ty  is t he re fo re  a function of the vec to r  which defines the coordinates  of the point in space  and 
the v e c t o r  which def ines  the d i rec t ion at the s ame  poinL The main  r e su l t  obtained in [3] is  that  the energy  
densi ty  U(x, Pi, qi ) at  a point M with coordinates  (x, qi ) in the di rect ion (Pi) is de te rmined  by the initial ene rgy  
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density ~[q~ qk, Pk ), P~ qk, Pk )], where qO and p0 are  expressed  in t e rms  of x, qk, and Pk using the dynamic 
equations (i, k = l ,  9. . . . .  , n - 1, where n is the dimension of the space). 

In the p resen t  paper ,  using the approach developed in [3], we analyze the energy  of a beam of light prop-  
agating through a sys tem of aber ra t ion less  thermal  gas lenses subjected to stochast ic  t r ansver se  displacements.  

2. We wilI a s sume  that the optical sys tem pos se s se s  axial symmet ry  and we will therefore  only con- 
s ider  the plane case.  We will take as a model of the light guide a sys tem of N s imi la r  thermal  gas lenses'  of 
length l, each of which can be independently displaced by a random amount f rom the ideal optic axis x and are  
separa ted  by optically uniform sections of length D. We will assume that the random t r ansve r se  displacements 
of the k-th lens kk obey a definite law (for example, a normal  Iaw) with a distr ibution ffmction P(Xk). General ly 
speaking, it is unnecessa ry  to assume that there is no corre la t ion  between the lens displacements:  the whole 
sys tem can be cha rac te r i zed  by the distribution function P0,1, )~2, �9 �9 ", XN), but we will a s sume in pract ice  that 

N 

P(~I. - �9 �9 , ~N) = I1 P()~k) �9 We will also assume that the diameter  of a lens is much grea te r  than the d iameter  

of the enter ing beam and that the var iance  of the random displacements  cr is small;  we will therefore  neglect 
the finite size of the lens aper tures .  

It was shown in [3] that the energy density of a beam of light propagating in a medium with a refract ive  

index of the fo rm n = n o (1 a 2.  - - ~  y ) is given by the express ion 

(1) 
V~-sin ] f a x  -k ~cos Vgx ]. 1 Y 

H e r e  x a n d  y are  the longitudinal and t r ansve r se  coordinates,  respect ively,  and ~ = d y / d x .  It follows f rom Eq.  
(1) that the energy density at  the exit of a lens of length l is 

U (x, y, y) = ~b [ y c o s V ' ~ l - - ~ s i n V ' a l ,  
(2) 

y V~-sin V[zl + y'cos lfla-I ] F 

We will now introduce the following notation: 

B ~ 0  ' 

V = % cos cp - -  i% sin % P = % - -  ~ (r -E i~). (3) 

Here ~0 is a unit 2 • 2 matr ix  and ~i is the Pauli matr ix,  which sat isfy the well-known relation 

crFrk ~ r -}- ieihzcr~, (4) 

where 6ik is the Kronecker  delta and elk / is the L e v i - C i v i t a t e n s o r .  In the notation of Eqs. (3) the exit co-  
ordinates of the beam at the k- th  lens Yk are  re la ted  to the entrance coordinates of the beam at the (k+ D - s t  
lens Yk+l,0 by the matr ix  P: 

Yk = PY~+I, 0, (5) 

while the entrance coordinates  of the beam at the k-th lens Yk,0 a re  related to its exit coordinates by the 
relat ion 

Yk, o = VY~ -~- (1 - -  V) A h. (6) 

The sequential use of r ecu r r en t  re la t ions of the form (5) and (6) enables us to relate  the entrance co-  
ordinates  of the beam at the f i r s t  lens to its exit coordinates at  the N-th lens: 

N - - I  

Yl,o = (VP)N-IVYN "q- ~ (VP) k (1 --V) Ak+l. (7) 
k = 0  

�9 This ref rac t ive  index for  a << 1 cor responds  to an aber ra t ion!ess  thermal  gas lens [4]. 
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The express ion  obtained enables us to caiculate the .mean-square deviation of the beam in the sys tem [5]. 

Hence, using the approach desc r ibed  in [3] we obtain the dynamic distr ibution of the energy  density at  
the exit  of the N-th lens: 

U (yN, riN, )U . . . .  ~N) -~ cD [(Yt,0)l, (Y1,0)2] ------ ~b (Yl;0), (8) 

where  we must  take as (Y1,0)i the corresponding components of the rep resen ta t ion  (7). 

It can be shown that sequential  matching of the distr ibution # at  each boundary of separat ion and d i rec t  
calculat ion of the t r a j e c to ry  [Eq. (7)] lead to the same r e su l t  for  the dynamic energy  distr ibution (8). This is 
not so in the ease  of a finite lens aper tu re :  suppose 2a is the d iamete r  of the lens; then introducing the vec to r  

A = ( ; ) ,  we obtain for  the dynamic energy  densi ty distr ibution at  the exi t  of the sys tem instead of Eq. (8, the 

express ion  

[ N--Ix ] 
U ( y ~ ,  ~IN, ~1 . . . . .  ~g) =qb k ( v p ) N - - I V Y N  + (VP) k (1--V)At~+x • 

k=0 

X H 0 ( V ) N - m - I V y  N ~- (VP)k-m(1 --V) A~:+I +" 
ra~o k =rtz 

N--I 

l a u  K~aviside fi~netion 0 is unders tood here  in the sense  

O ( Y ) = O [ (  Y ) ] ~ - - O ( Y ) =  { l '  O, y<O.  

In o rde r  to obtain the mean energy densi ty distr ibution in the beam pass ing through the above lens sys -  
tem we must  average  the dynamic distr ibution (8) or  (9) with the distr ibution function P()~I, Xz, �9 �9 -, ~N ) of the 
random lens displacements :  

U(yN, ~lN)= 1 i.d)~l . . . d~NP()~l . . . . .  )~N)U(~.Io YN, ri.~), 
i!Pll ' (10) 

~P!l = .f dZl �9 �9 �9 d~N0 (~1 . . . . .  ~N)- 

w 3. Le t  us cons ider  once again Eq. (8) and put 

YN - y,  rig = ri, (VP) N-~V --iiauil, (VP) k - '  (1 - - V )  := i;b~il; 

then ~k and bikl can be rega rded  as components of N-dimensional  vee to r s  A=(Xt, Xz, . . . ,  ~N) and bil= (b~l, b2l, 
N N 

. . . ,  bi~). I n the  express ion  for  U(y, ~, )0 we have the t e rm s  X O~tt.,, and ~ O~,,)~h, which can be more  con- 
k:=t k=l 

venientIy r ep re sen t ed  by (gl , )0  and (g2, X), respect ively;  then 

U (y, "q, ~,) = (25 [any  + a1~ri _- (gl,  "A), a2~y - -  a22ri _ (gv~)] (11) 

and the average  energy  density is 

O (y, 1"1) := 1 ~ d~,. 9 (~.) ~ [any _~_ aj.2 q 7- (gl, Z), a21y --~ a~2ri -i- (g2, ~)]. (12) !'o'~ 

The integral  in Eq. (12) is N-dimensional  and is inconvenient for  prac t ica l  calculations,  but in a number of 
cases  it can be r ep re sen t ed  in compact  form because U(y, U, ~) depends on the sca la r  product  of the vec to r s  

gi and X. 

We will obtain this compact  r ep resen ta t ion  for  U assuming that ~(Yl,0, ~?1,0) is an analyt ical  function of 
its var iab les  and can be expanded in a uni formly converging power se r i es :  

~--=F[v, ri, (g. ;~), (g~, 7.)1 = ~ c.. ,(v, ri)(g, ;0~(g~, ~0", (13) 
m, n~O 

and the distr ibution function of the random displacements  p is a Gaussian distribution with var iance  or: 

9 (~)=-(2u~)-~v"e exp [ - -  (~2~) ] - (14) 
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We will introduce the generating functional K, 

I (15) K(z,, z 2, gl, g2)-- [iPl---( Sd)~P()~)exp[izl(gl' )~) + iz2(g2' )~)]' 

and we will apply to it the formal  opera tor  se r ies  

! o  i o cm. ,) ) ( i Oz2 S 
F Y, ~l, i O-z x' i Oz., =m . . . .  o 

Using the uniform convergence of the se r ies ,  we can wri te  

[ ( 1 0 , 1 0 )K(z~, z2, g~, g2) ] (17) 
O (y, ~)= F y, ~, i Oz 1 i Oz 2 ~,=~=o . 

It is easy  to calculate the functional K for  the distribution p of the form (14): 

K (z~, z 2, gl, g2)=exp [ - - 2  (z~g~ + z~g~)~] �9 (18) 

Hence, the mean energy density Kl(y, ~) has the opera tor  representat ion 

U (y, 1])= F y, ~l, i Oz, i Oz 2 z,-z,=0 

f rom which we can change to the more  convenient integral  representat ion by represent ing  the generating func- 
tional by a Four i e r  t ransformat ion of its Four i e r  t ransformant :  

1 j. dpldp~ex p [ 1 (P~g~- P2ga)~ + iplzl-t-iP2z2]. (20) I~ (z. z~, g .  g~) = 2~,~ V g~ g~ - -  (g .  g~)~ 26 g~ g~ - -  (g,, g~)~ 

1 0 
It is seen that when the opera tor  F is applied to Eq. (20) under the integral,  - -  - -  is replaced by Pk as 

i OZk 
a resul t  of which Eq. (17) for the mean energy  density takes the form 

1 [ 1 (Pig,-- Pug1) 2 ] F (y, ~1, Pl, P2)" (21) ~J(Y, ~1):: 2.n6V ., 2 - - ~ d p l d p 2 e x p  - -  .~ 2 
g~ g2 - -  ( g l ,  g2) 2 26 gl g2 - -  ( g l ,  g2) 2 

In the last  express ion we now have a double integral  so that Eq. (21) for the mean energy density is in p r a c -  
t ical respec ts  much more  convenient than Eq. (12) in the form of an N-tuple integral.  

Note that in view of the Cauchy inequality (gl, g2)2 _ ~g~ and Eq. (21) does not lose any meaning for  any 
gl and g2. 

w 4. When the entrance beam has a plane wave front, the normal  of which coincides with the optic axis, 
the function F can be writ ten in the form 

F = �9 [aa~y + a~2~ ] -~ (gl,)~)] 6 [a21H -+ a2~ ] ~. (g2, $-)] (22) 

and the express ion for the mean energy density l~ can be represented in a s impler  form. Since we are  only 
interested in the behavior of l~ in configuration space, using the presence  of the 6-function we integrate (21) 
over the angles ~: 

where g l -  (ala/a22) g2 = g" 

L} (Y) V" 2~6g2a~2 _ tic ~a22 -~ p , (23) 

The last  express ion shows that the function ~, can have a fair ly general  form,  since it is integrated with 
a s t rong cutoff factor.  In the general  ease we can obtain for  Eq. (23) an asymptot ic  representa t ion  using, for 
example, the Laplace method [6]. For  ~(T) = exp (_~.2/2), Eq. (23) is easi ly evaluated: 

1 , exp . (24) 
(Y) - l / a ~ 2  (1 + 6g ~) 2 a 222 (1 + 6g  ~) 

The coefficients ail,  gt, g2, and g whieh occur  in Eqs. (21) and (23) depend on the number  of lenses in the 
sys tem N and on the pa rame te r s  of the sys tem c~, l, and D. We will now calculate these coefficients.  

719 



w 

where 

and 

F i r s t  we will calculate (VP) k. In the notation given by Eqs. (3) we can write 

vP = Co%+~, ~), 

= (el' C2' C8)' ~ = (if1' 02' fiB)' (~  Or'+) = Clffl + C2ff* + C3ff3 

L L ( L ) L 
c o = c o s t p - - s i n %  c , = - - - - c o s %  c z = - - i  sintp+-~-cosq) , c a = - s i n %  

2 2 2 

A consequence of relat ion (4) is  

C c, ~ ) = l  ok' k = 2 m ,  

c~ 5 ,  ,,5, k = 2~ + 1, 

m = O ,  1, 2, ; c - - V -  -* W c ~ - i  
" "  , (  ~, - 5  = ' 

which enables us to represen t  (VP) k in the form 
k 

(Vp) k " k 

~ VeI1 
t t ~ D  

k 

C 

where (mk ) are  binomial coeffictents.  

T h e s u m s ~ 1 7 6  ( , : ) [ ~ ' w h i c h o c e u r m  
even 

(25) 

(26) 

in Eq. (26),can be evaluated by introducing 

a generating function of the type H(t) =hl(t).h2~t) , where hi(t) , h~.(t) =cht ,  sht ,  and taking its derivative with re -  
spect  to t of the k-th Order. We thereby obtain 

1 
m ------2 - [(1 + ~)~ -!- (1 --  [~)k 1' 

(27) 

= I T [ (  1 + ~)k --(1 --~)~ ]. 
odd 

Thermal  gas lenses are  usually short ,  so that ]fl~-I =(p << l, ~--- c/c o = i'7 in the neighborhood go=0, and 
y is a real  number.  Then, introducing the complex number ~ = l+iT,  we can write 

(Vp) k 1 [ ] 2!~! a (~ -k , __ . (28) 

The complexity of Eq. (28) is only apparent as can easi ly  be shown by represent ing ~k in the form exp [kln I~l + 
ik a rg  ~]. As a resu l t  we obtain 

-+ ~ (29) (VP) k = cosk6 + (c, ~ ) - =  sink6, 
7 

where ~ =arg  ~. 

Putting cos k5 =A k and ([~[/Y)sin k6 =B k, we have for the ma t r i ces  [Jail][ and Hbik/ [[ the following ex-  
pressions:  

[ ( )] (VP) k V =  A k c o s ( p - B  ~sinq~ s i n ~ + - ~  cos~ % -  

cos L cos q)) ]o'2, 
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I t  is  not  now diff icul t  to obtain the m a t r i x  e l e m e n t s  we r equ i r e ;  in p a r t i c u l a r ,  the componen t s  of the v e c -  
t o r s  gi a r e  given by 

g~ = b~ = A ~ (1 - -  cos q~) + B~sin q~ sin q~ + -~  cos q~ ~- - 2 -  , (30) 

- -  cos  tp + 

E x p r e s s i o n s  (21) and (23) f o r  the m e a n  e n e r g y  dens i ty  of the b e a m  only conta in  s q u a r e s  of  the v e c t o r s  gi 
and the i r  s c a l a r  product .  We will  obtain these  quant i t ies .  

R e p r e s e n t i n g  g f  in the f o r m  

g~ = d~A ~ + q~B ~ 

we obtain 

N--- I  N--I N - - I  

(g~, gJ) = d f l i  ~ (A k )~ -i- (diql -5 diq~) ~.~ A ~ B ~ . -  q~ql ~] (B ~)~, i, ] =  I, 2. (31) 
k = O  k = O  k ~ O  

The s u m s  in Eq. (31) can be found by r e p r e s e n t i n g  e o s l ~  and s ink6  by m e a n s  of  the E u l e r  equat ions .  N e g l e c t -  
ing t e r m s  that  a r e  bounded as  N--* ~ we can wr i t e  

(g~, g j) 

and we then obtain the fol lowing e x p r e s s i o n  fo r  the 

1 

• exp [ a N  

where  

and 

N (did j _._ qiqJ) 

m e a n  e n e r g y  dens i ty :  

J'dpldp.~F (Y, rl, Pl, P~)X 
~aN l" d~ q~ + d~ q~ - -  2dxd.~q,q~. 

1 2 o . ,~ . 2 -] 
p,(dfi =- qD -i- P2 (d~ . F q~) - -  2p,p2 (d~d2 ..L qlq,) 

o ,~ 2 2 " 3 di q~ -7- do_ ql - -  2dld2qlq2 

d 1 =  1--cosc9; q l =  '~ sintp sin q~ -,- -=  cos qc + ; 
7 

d , = - - s i n ~ ;  a = - -  ( 1 - -  cos ~) s inw+~/ ' cos~+L-~- /  
y 2 2 / 

= l/cz-l, L = V~-D. 

The mean  e n e r g y  dens i ty  in the case  of  a p lane  e n t e r i n g  beam [express ion  (23)] now has  the f o r m  

(32) 

(33) 

0 (y) ~ - -  

~aNaS~ di 

1 
'9 0 

. ai2 (d~q-q~)- -2  a ; 2 . d ,  -}-qlq2)] + q i  ~ - ~  a22 a~2 ~ la2 
J 

X 

' [ 
2 

o ' al . . . .  a ~  (did ~ + qlq~) d i @  q~ + - ~  (d~. + q~) - -  2 T 
aT,_~ a22 

(34) 

E x p r e s s i o n s  (21) and (23) o r  (33) and (24) enable us to ca lcu la te  in a s imple  m a n n e r  the mean  e n e r g y  W at  the 
ex i t  of  the l a s t  l ens ,  

a 

- - a  

and to f ind the lo s s  in e n e r g y  in the s y s t e m ,  i .e . ,  1 - W .  
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N O T A T I O N  

U, l ight ene rgy  densi ty;  r  initial l ight ene rgy  distr ibution;  p,  dis t r ibut ion function of the r andom d i s -  
p lacements ;  l ,  length of a lens; D, d is tance  between lenses ;  ~,  speci f ic  convergence  of the s t ruc tu re  in a lens;  
~0~ unit  2 • 2 ma l r ix ;  e l ,  Paul i  ma t r ix ;  h, r andom d i sp lacements  of the lenses ;  ~, the va r i ance  of the r andom 
d isp lacements ;  N, number  of l enses  in the l ight gu ide .  
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CALCULATING ANGULAR RADIATION COEFFICIENTS 

BY THE METHOD OF FLOW ALGEBRA 

A .  5. S k o v o r o d k i n  UDC 535.231 : 536.3 

A method is dese r  ibed for  the calculat ion of mean  angular  radiat ion coefficients  in two-d imen-  
sional  s y s t e m s  consis t ing of any n u m b e r  of plane su r faces ,  including s y s t e m s  in which two adja-  
cent  su r f aces  fo rm a concave p a r t  of the contour.  It is shown that  for  the calculat ion it is suf-  
f icient  to know the coordinates  of all zone boundar ies  and the c h a r a c t e r i s t i c  point of the sys tem.  

In ca lcula t ions  of rad ia t ive  hea t  exchange between su r f aces  of a s y s t e m  infinitely s t r e t ched  out in one 
direct ion (a two-d imens iona l  sys tem) ,  the method of flow a lgebra  is widely used for  the de terminat ion  of mean 
angular  radiat ion coeff ic ients  [1, 2]. This  method is often cal led the method of s t r e t ched  s t r ings ,  the envel -  
oping curves  method,  and the a lgebra ic  method.  In conformi ty  with the notation in Fig. 1, the angular  coeffi-  
cient  between two t e rm i na l  s u r f ace s  F 1 and F 2 is given by the s imple  a lgebra ic  express ion  

(AC ~. BTD) - -  (AD ~ BTKC) (1) 
'h,2 ~- 2 AB ' 

where  AC, BTD etc . ,  axe the lengths of the e las t i c  s t r ings  s t r e t ched  between the corresponding boundar ies  of 
the su r f aces  F 1 and F 2. 

It s hou ldbe  noted that  the de te rmina t ion  of the lengths of e las t ic  s t r ings  in s y s t e m s  with a large number  
of zones,  p a r t i c u l a r l y  in the case  of calculat ions with many  va r i an t s ,  gives r i s e  to fundamental  difficult ies and, 
as a ru le ,  neces s i t a t e s  the use  of a computer .  Here  it is des i r ab le  to desc r ibe  the s y s t e m  by a min imum num- 
ber  of initial  va lues  and to calculate  the e lements  of the ma t r ix  of angular  radiat ion coefficients  according to 
a un iversa l  re la t ion .  

The object ive of the p re sen t  work  is application of the method of flow a lgebra  for  the calculation of an-  
gular  coeff icients  in two-dimens iona l  s y s t e m s  of plane su r faces .  
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