pulse; AT, 0] per the permigsible residual overheating of the thermistor at the end of the interval between
pulses; 1, thermistor coefficient of thermal loading; 74, electrical time constant of thermistor; AR, incre-
ment of thermistor resistance due to action of voltage pulse.
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DETERMINATION OF THE MEAN ENERGY DENSITY
OF A LIGHT BEAM IN AN IRREGULAR THERMODYNAMIC
LIGHT GUIDE

A. F. Yakubov, E. T. Bruk-Levinson, UDC 654.91:621.372.81.09 : 535.811
A. G. Muradyan, and O. G. Martynenko

The mean energy density of a beam of light in an irregular thermodynamic light guide with ran-
dom lens shifts is calculated using the approach described in [3].

§1. The energy structure of a beam of light propagating in an optical communication line consisting of
a series of discrete phase correctors is usually studied by quasioptical methods [1]. For regular lines this
approach enables one to obtain fairly complete information on the mode structure, the losses in the line, etc.,
but serious difficulties are encountered when one attempts to apply a similar analysis to lines which have a
different kind of statistical irregularity (displacement of correctors, rotation of the beam, differences between
the corrector parameters, etc.).

Geometrical optics, which is simpler than other approaches, enables one to obtain reasonable information

on the energy distribution in the beam of light. One of the versions of this approach is the ray method (see [2]
and the references given there). Another approach by which the energy distribution can be analyzed using
geometrical optics has been described in [3]. A differential equation for the light energy density was obtained
there which enables one to find the energy density at any point in the region for an assigned initial distribution.
The evolution of the energy distribution of the beam in this approach is traced in phase space of the beam, and
the energy density is therefore a function of the vector which defines the coordinates of the point in space and
the vector which defines the direction at the same point. The main resuli obtained in [3] is that the energy
density Ulx, p;, q;) at a point M with coordinates (x, q;) in the direction (py) is determined by the initial energy
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density ®lq}(x, ai, py), p}(x, qi, p)], where q} and p} are expressed in terms of x, qy, and py using the dynamic

equations (i, k=1, 2, ..., n — 1, where n is the dimension of the space).

In the present paper, using the approach developed in [3], we analyze the energy of a beam of light prop-
agating through a system of aberrationless thermal gas lenses subjected to stochastic transverse displacements.

§ 2. We will assume that the optical system possesses axial symmetry and we will therefore only con~
sider the plane case. We will take as a model of the light guide a system of N similar thermal gas lenses of
length 1, each of which can be independently displaced by a random amount from the ideal optic axis x and are
separated by optically uniform sections of length D. We will assume that the random transverse displacements
of the k-th lens Aj obey a definite law (for example, a normal law) with a distribution function p(Ag). Generally
speaking, it is unnecessary to assume that there is no correlation between the lens displacements: the whole
system can be characterized by the distribution function p(A4, Ay, . .., AN), but we will assume in practice that

N
oy - - -, Ay =11 p(A). We will also assume that the diameter of a lens is much greater than the diameter
k=]

of the entering beam and that the variance of the random displacements ¢ is small; we will therefore neglect
the finite size of the lens apertures.

It was shown in [3] that the energy density of a beam of light propagating in a medium with a refractive

index of the form n = n,(l —% $?)* is given by the expression

U, y, f) = [ yeos Vax — Y sin Vax,
Ve
(1)
—yVasinVax+ geosVax ].

Here x and y are the longitudinal and transverse coordinates, respectively, and y=dy/dx. It follows from Eq.
(1) that the energy density at the exit of a lens of length [ is

U, y, )= @[ycos Val—-L snyal,
. Va

yVasinVal +ycosy ol ] .

(2)

We will now introduce the following notation:
o=Val, L=y @D, n=yVa, Y=( y)» A= 3)
| \

V = gycos ¢ — i, sin g, P = g, — —‘;— (6, =+ ia,). (3)

Here 0y is a unit 2X 2 matrix and ¢; is the Pauli matrix, which satisfy the well-known relation
0,0, = 0,0, -+ 18,3,0,, (4)
where 6, is the Kronecker delta and ejk; is the Levi—Civitatensor. In the notation of Eqs. (3) the exit co-

ordinates of the beam at the k-th lens Yk are related to the entrance coordinates of the beam at the (k+1)-st
lens Yk+1,0 by the matrix P:

Ya=PYi o (5)

while the entrance coordinates of the beam at the k-th lens Y o are related to its exit coordinates by the
relation

Yo, o =VYe+ (1 =V)A, (6)
The sequential use of recurrent relations of the form (5) and (6) enables us to relate the entrance co-
ordinates of the beam at the first lens to its exit coordinates at the N-th lens:

N—1

Yie= (VP""'VYy + 3 (VP (1 —V)A,,,. (7

k=0

* This refractive index for o « 1 corresponds to an aberrationless thermal gas lens [4].

717



The expression obtained enables us to calculate the mean-square deviation of the beam in the system [5].

Hence, using the approach described in [3] we obtain the dynamic distribution of the energy density at
the exit of the N-th lens:

Ulgm, , by« - ) = DUV 0 (Vo =D (Yo, (8)
where we must take as (Y, g); the corresponding components of the representation (7).

It can be shown that sequential matching of the distribution ® at each boundary of separation and direct
calculation of the trajectory [Eq. (7)] lead to the same result for the dynamic energy distribution (8). This is
not so in the case of a finite lens aperture: suppose 2a is the diameter of the lens; then introducing the vector

A= ( g )., we obtain for the dynamic energy density distribution at the exit of the system instead of Eq. (8) the

expression
N—1
Ulyw, v by -+ - AN)=¢[ VP VYN + (VP)k(l'—V)Ah+1] %
k=0 -
N—1 N—1
x ITe [(VP)”""“VYN+ DR —V) Ay +
m=0 k=m
. N—I
+ A— Ay ] lA — Ay — (VP Yy — X (VP (L —V) Am} : 9
_ k=m

1ne Leaviside function 9 is understood here in the sense

o[-0 oz

In order to obtain the mean energy density distribution in the beam passing through the above lens sys-
tem we must average the dynamic distribution (8) or (9) with the distribution function p{Ay, 2y, . . ., AN) of the
random lens displacements:

=~ 1 .
Uyn, nn) ZTT,"d)“ e oy oo AU Oy yns )y
1% . (10)
ol = fdh, . . . dhyp(hy, - o . ).
§3. Let us consider once again Eq. (8) and put
gv =y, my =1, VATV = layl, VP TI(L—V) = fbi;

then Ay and bli{l can be regarded as components of N-dimensional vectors A=(7\1, Az, « .-y AN) and bil: (b%l’ b2~ P

1l) In the expression for Uly, 7, A) we have the terms 2 %2, and le t%1h,, which can be more con-
vemently represented by (g;, A) and (g, A), respectively; then

U, 2 &) =Plajpy +aph + (8 M, Gny + 00+ (824)] (11)

and the average energy density is

U y, W)= Tl': {dho (W) @ [ayy + aph — (g1, N any =+ Gy -+ (g5 M. (12)
o
The integral in Eq. (12) is N-dimensional and is inconvenient for practical calculations, but in a number of
cases it can be represented in compact form because Uy, 1, A) depends on the scalar product of the vectors
g and A.
We will obtain this compact representation for U assuming that ®(yy,0, My,0) is an analytical function of
its variables and can be expanded in a uniformly converging power series:

o

¢'EF[yv 1, (gl’ }‘)’ (gz, }')] - }-i Crn (y’ ﬂ)(g» }") (g2v }")” ’ (13)

m, n==0

and the distribution function of the random displacements p is a Gaussian distribution with variance o:
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We will introduce the generating functional K,

y 1 . ,
K@, 2 g0 8) =5 (dio @) esplia(gn 1)+ iz (@ A, (15)
{d]
and we will apply to it the formal operator series
19 14 N (1a\M(1a)n
Fly, 9, — —, —— | = Copn (Y5 —_—— — ] . (18)
(y g 8z, i 6z2) mgo mn (92 1) i 0z ,} i 0z,
Using the uniform convergence of the series, we can write
— 1 0 i
Uy, = s M — —, — — | K2y, 2, g1, (17
(y n) l: (y n i a'21 i az2> (21 22 gl gz)]z,=22=0 .
It is easy to calculate the functional K for the distribution p of the form (14):
Kz, 25 81 &) =exp [_‘ % (2,8, + Z2g2)2] . (18)

Hence, the mean energy density Uly, n) has the operator representation

U, n) :{ (y, 1, —1 _a__ L i) exp {—% (2.8, + 28)° ]} ) (19)

4 azl i 622 2y=:2,=0

from which we can change to the more convenient integral representation by representing the generating func-
tional by a Fourier transformation of its Fourier transformant:
1
Ky 2 8u 8) = e [ dpyd zeXP[—
20V gt gl — (g1, &)

1 (pg— P:81)"
2 gig— (g &

+ ipyz -+ ip222] . (20)

It is seen that when the operator F is applied to Eq. (20) under the integral, —1 aa— is replaced by py as
[ Oz
a result of which Eq. (17) for the mean energy density takes the form

i 1 1 ;18— )
Uy, m) = === [ dpydp, eXp[ — }F(y, N, Pu Po)- (21)
206 V g} gt — (g, g Jpip % gig—(g 8 v

In the last expression we now have a double integral so that Eq. (21) for the mean energy density is in prac-
tical respects much more convenient than Eq. (12} in the form of an N-tuple integral.

Note that in view of the Cauchy inequality (g, gz)2 = g%g% and Eq. (21) does not lose any meaning for any
g; and g.

§ 4. When the entrance beam has a plane wave front, the normal of which coincides with the optic axis,
the function F can be written in the form

F=Yayy+ apn -+ (g1, MI01agy -+ apn . (g5 ] (22)

and the expression for the mean energy density U can be represented in a simpler form. Since we are only
interested in the behavior of U in configuration space, using the presence of the é-function we integrate (21)
over the angles 7: '

U =

P y
~»§dp6Xp( )‘F(—%‘p), (23)
l’ 10g2a22 20°g* Qg

where gi_(aiz/azz) g8

The last expression shows that the function ¥ can have a fairly general form, since it is integrated with
a strong cutoff factor. In the general case we can obtain for Eq. (23) an asymptotic representation using, for
example, the Laplace method [6]. For ¥(7) =exp(—7%/2), Eq. (23) is easily evaluated:

_v —lﬁ-] ) (24)

U = €X
@ V k(1 + og?) p[ 2 a3 (l + og?)

The coefficients aij, g4, g,, and g which occur in Egs. (21) and (23) depend on the number of lenses in the
system N and on the parameters of the system ¢, I, and D. We will now calculate these coefficients.
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§5. First we will calculate (VP)K. In the notation given by Egs. (3) we can write

VP = ¢y0, + (_c), g),

where
¢ = (Clv Cys 03), 0= (O'lv 0y, Ga)n (E: E;) = ;0 + Cy0y + 0363 (25)
and
. L N L L
Cp=10C0SP—-—8in@, ¢;=-——-cosQ, ¢, = —1i [sin e , = sin o.
1) ® > P, G o 9, ¢, (Sl ? + 2 05q>) g 2smq>
A consequence of relation (4) is
— = R = 2ﬂ1
(¢ o) = & > e k ’
¢t (c, 0), b= 2m+1,

m=0,1,2,...; C=VA(—E’ —c’) =Vea—-1,

which enables us to represent (VP)K in the form

k - - k
. k ,
(VP) = cﬁ[ SI (m ) ey + L9 c“) ;: ( :l) (C/co)'"] , (26)
O

‘even
m=0 m==10

where (’: ) are binomial coefficients.

The sums of the form 2 ( z) g, § ( k ) p™, which occur in Eq. (26),can be evaluated by introducing
even ‘ ° m

a generating function of the type H(t) =h,(f)-h,(8t), where hy(t), hy(t) =cht, sht, and taking its derivative with re-
spect to t of the k-th order. We thereby obtain

M (o )er =g pr s a—prl

even

27

E\om 41
;(m)ﬁ b I+ B — (1 — PP L

Thermal gas lenses are usually short, so that Vol=¢< 1, p=c/c,= iy in the neighborhood ¢=0, and
v is a real number. Then, introducing the complex number ¢ = 1+1iy, we can write

1
2ig*

VP = [(Ck —9+ (6 9= @~ )} : (28)
v

The complexity of Eq. (28) is only apparent as can easily be shown by representing ¢k in the form exp(kln J¢|+
ik arg £]. As a result we obtain

(V) — cos k8 - (<, o) —=- sin k6, (29)

-2

where d =arg §.

Putting cos k5 =AK and (J¢|/ ) sin ké =BK, we have for the matrices Hailll and l[bl-fl | the following ex-
pressions:

P}V = {Ak cos ¢ — B* Sin(p( sin ¢ + _12; cos (p)JO'o—-
Bt L A ar si Br . L
— ) o;— 1 sing + B cos@ {sing + —§~cosq> Gy,
VP (1 —V)= [Ak (1 —cosg) — Bt sing (singo + -g—coscp)}oo -+

-+ B"A(l——coscp) Gy -} i| At sing — B* (1 —cos ¢) (sing +~[;cosq>) Oy =~ Bkisin(p O
2 ! ¢ 2 2
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It is not now difficult to obtain the matrix elements we require; in particular, the components of the vec-
tors gj are given by

g =0tk = 4" ~— COS @) +Bksincp(sintp + Acosq> #}—4—) ,
2 2. 30)

g’;:b’;, ————Aksimp-l—Bk(l — cos (p) (sin(p—‘r— —Lé'—cosq) +-§) .

Expressions (21) and (28) for the mean energy density of the beam only contain squares of the vectors g
and their scalar product. We will obtain these quantities.

Representing gy in the form
gl = d,A" + q.B*;
we obtain

N—1 N—1

N--1
(81 &) =dd; X, (A - (dig; -~ dsq) DAL BE <-qa; (B, i, j=1, 2. 31)
k=0 k=0 k=0

The sums in Eq. (31) can be found by representing cos kd and sinké by means of the Euler equations. Neglect-
ing terms that are bounded as N— « we can write

N )
g g = - dd; - q,95) (32)
and we then obtain the following expression for the mean energy density:
- 1
Uy, w= —=3 {dpdp,F (y, M, Py Py X
N1V di g5 + di ¢F — 2d,d,9,4 o v
X exp [_ 1 _ritd < q3) - i (di 290 — 2010, (@idy -+ 4g) J , (33)
oN di g2 —d2 qi — 2d,dygqq,
where
T . L . L )
dy=1—cosq; q,=-"=sing {sing - = cosg¢ + — ;
¥ ( 2 2
iz Y
dy = —sing; g, == (1 —cos @) (sinq) - icos<p—;~—L—)
Y 2 2
and
¢=Val, L=VaD.
The mean energy density in the case of a plane entering beam [expression (23)] now has the form
7 1
Ulyy =~ = = = — X
l/ aoNad| d} = g} + 212 (@ ¢d) — 282 (dd, - gugy) J
L Q23 [<FF
. , ' 1 1
® 1dp¥ (i 4 p ) exp| — —. 3 5 . (34)
, Qgg oN &t a2 d2 ) ais ,
141+ p (d2+q2)—2 o (@d, - q.9,)

Expressions (21) and (23) or (33) and (24) enable us to calculate in a simple manner the mean energy W at the
exit of the last lens,

W= _f dyU (y).

and to find the loss in energy in the system, i.e., 1 ~W,
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NOTATION

U, light energy density; ®, initial light energy distribution; p, distribution function of the random dis-
placements; Z, length of a lens; D, distance between lenses; ¢, specific convergence of the structure in a lens;
Gy; unit 2 X 2 matrix; oy, Pauli matrix; A, random displacements of the lenses; ¢, the variance of the random
displacements; N, number of lenses in the light guide..

LITERATURE CITED

1.  B. Z. Katsenelenbaum, High-Frequency Electrodynamics {in Russian], Nauka, Moscow (1966).

2. V. M. Babich and V. S. Buldyrev, Asymptotic Methods in Short-Wave Diffraction Problems [in Russian],

_ Nauka, Moscow (1972).

3. E. T. Bruk-Levinson, O. G. Martynenko, and A. F. Yakubov, Izv. Akad. Nauk BelorusSSR, Ser. Fiz.-
Energet. Nauk, No. 2 (1976).

4, O. G. Martynenko, P. M. Kolesnikov, and V. L. Kolpashchikov, Introduction to the Theory of Convective

Gas Lenses [in Russian], Nauka i Tekhnika, Minsk (1972).

A. F. Yakubov, Izv. Akad. Nauk BelorusSSR, Ser. Fiz.-Energet. Nauk, No. 3 (1974).

E. T. Copson, Asymptotic Expansions,Cambridge University Press.

[~ I

CALCULATING ANGULAR RADIATION COEFFICIENTS
BY THE METHOD OF FLOW ALGEBRA

A. I. Skovorodkin UDC 535.231:536.3

A method is described for the calculation of mean angular radiation coefficients in two-dimen-
sional systems consisting of any number of plane surfaces, including systems inwhichtwo adja-
cent surfaces form a concave part of the contour. I is shown that for the calculation it is suf-
ficient to know the coordinates of all zone boundaries and the characteristic point of the system.

In calculations of radiative heat exchange between surfaces of a system infinitely stretched out in one
direction (a two-dimensional system), the method of flow algebra is widely used for the determination of mean
angular radiation coefficients [1, 2]. This method is often called the method of siretched strings, the envel-
oping curves method, and the algebraic method. I conformity with the notation in Fig. 1, the angular coeffi-
cient between two terminal surfaces F; and F, is given by the simple algebraic expression

(AC + BTD) — (AD -+ BTKC) (1)
2 AB !

P12 =

where AC, BTD etc., are the lengths of the elastic strings stretched between the corresponding boundaries of
the surfaces F; and F,.

It should be noted that the determination of the lengths of elastic strings in systems with a large number
of zones, particularly in the case of calculations with many variants, gives rise to fundamental difficultics and,
as a rule, necessitates the use of a computer. Here it is desirable to describe the system by a minimum num-
ber of initial values and to calculate the elements of the matrix of angular radiation coefficients according to
a universal relation. '

The objective of the present work is application of the method of flow algebra for the calculation of an-
gular coefficients in two-dimensional systems of plane surfaces.
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